Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 13, 2026
- 
            Recent works have demonstrated the vulnerability of Deep Reinforcement Learning (DRL) algorithms against training-time, backdoor poisoning attacks. The objectives of these attacks are twofold: induce pre-determined, adversarial behavior in the agent upon observing a fixed trigger during deployment while allowing the agent to solve its intended task during training. Prior attacks assume arbitrary control over the agent's rewards, inducing values far outside the environment's natural constraints. This results in brittle attacks that fail once the proper reward constraints are enforced. Thus, in this work we propose a new class of backdoor attacks against DRL which are the first to achieve state of the art performance under strict reward constraints. These ``inception'' attacks manipulate the agent's training data -- inserting the trigger into prior observations and replacing high return actions with those of the targeted adversarial behavior. We formally define these attacks and prove they achieve both adversarial objectives against arbitrary Markov Decision Processes (MDP). Using this framework we devise an online inception attack which achieves an 100% attack success rate on multiple environments under constrained rewards while minimally impacting the agent's task performance.more » « lessFree, publicly-accessible full text available July 13, 2026
- 
            Shielding is an effective method for ensuring safety in multi-agent domains; however, its applicability has previously been limited to environments for which an approximate discrete model and safety specification are known in advance. We present a method for learning shields in cooperative fully-observable multi-agent environments where neither a model nor safety specification are provided, using architectural constraints to realize several important properties of a shield. We show through a series of experiments that our learned shielding method is effective at significantly reducing safety violations, while largely maintaining the ability of an underlying reinforcement learning agent to optimize for reward.more » « lessFree, publicly-accessible full text available May 19, 2026
- 
            Shielding is an effective method for ensuring safety in multi-agent domains; however, its applicability has previously been limited to environments for which an approximate discrete model and safety specification are known in advance. We present a method for learning shields in cooperative fully-observable multi-agent environments where neither a model nor safety specification are provided, using architectural constraints to realize several important properties of a shield. We show through a series of experiments that our learned shielding method is effective at significantly reducing safety violations, while largely maintaining the ability of an underlying reinforcement learning agent to optimize for reward.more » « lessFree, publicly-accessible full text available April 23, 2026
- 
            Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion.more » « lessFree, publicly-accessible full text available April 30, 2026
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Free, publicly-accessible full text available November 6, 2025
- 
            Free, publicly-accessible full text available November 6, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available